เพื่อพล็อตค่าการสูญเสียที่ได้รับจาก (loss_curve_) จาก MLPCIassifier อย่างเหมาะสม เราสามารถทำตามขั้นตอนต่อไปนี้ -
- กำหนดขนาดรูปและปรับช่องว่างภายในระหว่างและรอบๆ แผนผังย่อย
- สร้างพารามิเตอร์ รายชื่อพจนานุกรม
- สร้างรายการป้ายกำกับและพล็อตอาร์กิวเมนต์
- สร้างร่างและชุดแผนย่อยด้วย nrows=2 และ ncols=
- โหลดและส่งคืนชุดข้อมูลไอริส (การจัดประเภท)
- รับ x_digits และ y_digits จากชุดข้อมูล
- รับ data_set ที่กำหนดเอง รายการทูเพิล
- วนซ้ำซิป ขวาน data_sets และรายชื่อชื่อเรื่อง
- ใน plot_on_dataset() กระบวนการ; ตั้งชื่อแกนปัจจุบัน
- รับอินสแตนซ์ตัวแยกประเภท Perceptron แบบหลายชั้น
- รับ mlps นั่นคือรายการของอินสแตนซ์ mlpc
- วนซ้ำ mlps และพล็อต mlp.loss_curve_ โดยใช้ plot() วิธีการ
- หากต้องการแสดงรูป ให้ใช้ show() วิธีการ
ตัวอย่าง
import warnings import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import datasets from sklearn.exceptions import ConvergenceWarning plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'adam', 'learning_rate_init': 0.01}] labels = ["constant learning-rate", "constant with momentum", "constant with Nesterov's momentum", "inv-scaling learning-rate", "inv-scaling with momentum", "inv-scaling with Nesterov's momentum", "adam"] plot_args = [{'c': 'red', 'linestyle': '-'}, {'c': 'green', 'linestyle': '-'}, {'c': 'blue', 'linestyle': '-'}, {'c': 'red', 'linestyle': '--'}, {'c': 'green', 'linestyle': '--'}, {'c': 'blue', 'linestyle': '--'}, {'c': 'black', 'linestyle': '-'}] def plot_on_dataset(X, y, ax, name): ax.set_title(name) X = MinMaxScaler().fit_transform(X) mlps = [] if name == "digits": max_iter = 15 else: max_iter = 400 for label, param in zip(labels, params): mlp = MLPClassifier(random_state=0, max_iter=max_iter, **param) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=ConvergenceWarning, module="sklearn") mlp.fit(X, y) mlps.append(mlp) for mlp, label, args in zip(mlps, labels, plot_args): ax.plot(mlp.loss_curve_, label=label, **args) fig, axes = plt.subplots(2, 2) iris = datasets.load_iris() X_digits, y_digits = datasets.load_digits(return_X_y=True) data_sets = [(iris.data, iris.target), (X_digits, y_digits), datasets.make_circles(noise=0.2, factor=0.5, random_state=1), datasets.make_moons(noise=0.3, random_state=0)] for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits', 'circles', 'moons']): plot_on_dataset(*data, ax=ax, name=name) fig.legend(ax.get_lines(), labels, ncol=3, loc="upper center") plt.show()
ผลลัพธ์